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Abstract

This article is concerned with the numerical solution to the time-dependent Schrédinger equation on an infinite domain.
Two exact artificial boundary conditions are introduced to reduce the original problem into an initial boundary value
problem with a finite computational domain. The artificial boundary conditions involve the 1/2 order fractional derivative
in z. Then, a fully discrete explicit three-level difference scheme is derived. The truncation errors are analyzed in detail. The
stability and convergence with the convergence order of o+ th™ 2) are proved under the condition t/A* < 1/2 by the
energy method. A numerical example is given to demonstrate the accuracy and efficiency of the proposed method. Two
open problems are brought forward at the end of the article.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The time-dependent Schrédinger equation is the basic of quantum mechanics [8,16]. This model equation
also arises in many other practical domains of physical and technological interest, e.g. optics, seismology and
plasma physics. There are a lot of studies on the numerical solution of initial and initial-boundary problems
for solving the linear or nonlinear Schrodinger equation, see e.g. [9-14,22,23,28,31,32,40,43].

When we wish to solve numerically a differential equation defined on an infinite domain, it is necessary to
consider a finite sub-domain and to use artificial boundary conditions in such a way that the solutions in the
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finite sub-domain approximate the original solution. If the approximation is exact, the transfer is called
exact and the corresponding artificial boundary condition is called exact or transparent. For instance, dif-
ferent transparent boundary conditions (TBCs) for the wave equation are derived in [15,18,19,35,36,41,42].

In this article, we study the problem of the numerical approximation of a dispersive wave Y(x, ), solution to
the Schrodinger equation in an unbounded domain. More concretely, we consider the following linear
equation:

Nl oy

5= —%aerV( W, x€eR, t>0, (1.1)
¥(x,0) = dx), xeR, (1.2)
|l‘lin Y(x,t) =0, >0, (1.3)

where the electrostatic potential function V(x,?) is assumed to be given with Im(¥(x,?)) < 0, and for the sake
of conciseness, we assume that ¢ is a compactly supported datum. The solution to (1.1)—(1.3) is defined on the
whole domain Q = {(x,?)|x € R, > 0}. However, from a practical point of view, the infinite domain of prop-
agation has to next use a well-adapted discretization scheme for Eqs. (1.1)—(1.3). To this end, let us split the
initial domain @ into three regions. We designate by Q; = {(x,7)|x; < x < x, > 0} the interior domain where
one wishes to compute an approximate solution, and the two other complementary regions can be defined by
Q ={(x,0)|x <x,t>0} and Q, = {(x,1)|]x > x.,t>0}. To simplify the problem, we suppose that supp(¢)
c [x1,x.] and

V(x,t)=V_=const, forx<x, V(x,¢)=V,=const, forx > x,

with Im(V_) =Im(V3) =0

The transparent boundary conditions (TBCs) for Schrédinger equation were independently derived by sev-
eral authors from various application fields [2,7,21,29]; Inhomogeneous extensions are analyzed in [1,4]. They
are non-local in ¢ and read

awmﬂ_¢"nw, Yl s)e
ox V= dt/ Vi—s (14)

for the left boundary at x = x;, and

O (e, 1) _ VF (57 W&,‘“
Ox T dt Vi—s (15)

for the right boundary at x = x,. Using the notations of the Riemann-Liouville fractional derivative, the
boundary conditions (1.4) and (1.5) can be written as

O (x1, 7) e (1) A2 [y, )€

Ox 47
O (xr, ) _ —(3+741)i 4" (oxe, £)e ]
ox V2e a2 .

There are also an equivalent form to (1.4) and (1.5) as follows

_ % (%‘FVt)i/t ox [l/j(xl’ )eiVJ}
Yix, 1) = \/;e = ds (1.6)
for the left boundary at x = x;, and
__J* —(%+V+z)i/ & W (xe, 9)e]
Y (xe, ) = \/;e O N ds (1.7)
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for the right boundary at x = x,. Usually, (1.4) and (1.5) are called the Dirichlet-Neumann boundary condi-
tions and (1.6) and (1.7) are called the Neumann—Dirichlet boundary conditions [2]. In [29], (1.6) and (1.7) are
also called the impedance formulation.

As a consequence, the Cauchy problem (1.1)—(1.3) on the infinite domain can be reduced to the initial
boundary value problem

6(# 1 0%y
- <x< ,
at 7 +Vx,0)Y, x<x<x, t>0, (1.8)
lp(xv O) = d)( )7 X1 < X g Xry (19)

with the boundary conditions (1.4) and (1.5), or, with the boundary conditions (1.6) and (1.7).

Classically, the density ||¢||L2(R) is decreasing for the problem (1.1)—(1.3) in the whole space and
moreover it is conserved if the potential V(x,?) is real. In the case of a bounded domain, this should also
be the case for the L,([x},x.])-norm of the approximate solution. Arnold [3,5] proved the following
result.

Theorem 1. Let us assume that potential V € (R}, L>(C)) satisfies: Im(V(x,1)) <0, for x € [x;,x,] and t > 0.
Let y(x,t) be a solution to the initial boundary value problem (1.8) and (1.9) with (1.4) and 1.5), then,
Y € O(R",H' ([x1,x,])) and fulfils the following energy inequality

WG O g < 1PNy, YE>0and ¢ € H' ([a,x.]).

Let w;,={x]0 <j< M} be a uniform mesh of the interval [x,x,], where x;= x;+jh, 0 <j< M with
h=(x; — x))/M. Denote t, = nt,t,,1 = (n+3)71,n=0,1,2,...

Eq. (1.8) is often discretized by the Crank—Nicolson scheme

n n—1

i-%_ —% %(w,ﬂ 27y )+ V(x,-,tn,%)w;’*i 1<j<M-1, n>1, (1.10)
where lpj’% = %(lﬁ;’ + lﬂ; 1). The main difficulty of the numerical approximation is now linked to the presence
of a convolution operator in the boundary conditions. It is well-known that ad-hoc discretizations of analytic
TBCs leads to numerical reflections and might render the unconditional stable Crank—Nicolson scheme only
conditional stable. This destruction of the unconditional stability was proven in the thesis of Mayfield [27] in
the context of underwater acoustics with a homogeneous Dirichlet BC at x = 0 and a discretized TBC only at
x = x;. Following Mayfield’s discretization idea, if ' =0 and V; =0, the TBCs (1.6) and (1.7) can be dis-
cretized by

/ma@w(h%§:Wm+hm_me)t” ds )
0o Viv—s g h oy VIN =S

and

/t,v alI/er dswzlpxr, — / (112)
0 N_S ,,,\/N—S

Arnold and Ehrhardt [6] presented the following result.
Theorem 2. The difference scheme (1.10)—(1.12) is stable, if and only if

T . - N\ —
e Un [+ 1) @)

This shows that the chosen boundary discretization destroys the unconditional stability of the underly-
ing Crank—Nicolson scheme. If V(x,¢)=0, Baskakov and Popov [7] approximated boundary condi-
tions (1.4) and (1.5) by the piece-wise linear approximations of the functions (xy,s), Y(x.,s) in the
integrals:
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F /t ¥ (x, ) ds] [ _ewgm ds Z/ g
dr 0o VE—sS =ty VE—S \/tN—S
lﬁ xlatn - xlvtnfl) /t,, ds
~ 1.13
; T o VIN TS ( )
and
lp Xr, § :| - xra lp(xra tnfl) /t,, dS
) 1.14
[dt Vi—s ds =ty Zl T oy VIN—s (1.14)

For the one-dimensional Schrodinger equation, also see the paper by Schmidt and Yevick [34]. Yevick, Friese
and Schmidt [45] presented a comparison of transparent boundary conditions for the Fresnel equation. Sché-
dle [33] considered the numerical solution to the two-dimensional Schrédinger equation. Time discretization is
done by the trapezoidal rule in the interior and by convolution quadrature on the boundary. A convergence
estimate is declared for the semidiscretization in ¢. Space discretization is done by using the finite element
method and coupling the boundary conditions by collocation. A numerical example is given. Lubich and
Schéidle [25] have shown how the convolution kernel can be effectively compressed so that the required work
and storage depends only logarithmically on the number of time steps.

To our knowledge, there have been only a very few results on the convergence of the numerical results
for the Schrédinger equation in unbounded domain. In [39], for (1.8) and (1.9) with (1.4) and (1.5), we pre-
sented an implicit difference scheme. At each time level, only a tridiagonal system of linear algebraic equa-
tions needs to be solved and the Thomas method can be used. The unique solvability, unconditional
stability and convergence are proved. The convergence order is of O+ =V %). The numerical exper-
iment shew the theoretical results. As a special case, the stability and convergence of the difference scheme
(1.10), (1.13) and (1.14) are obtained. The authors of article [20] also derive an implicit difference scheme for
(1.8), (1.9) with (1.4), (1.5) by the method of reduction of order [37,38] and analyze the stability and
convergence.

As is well known, the explicit difference scheme has its own advantages. It is very simple for the numerical
implementation. In this article we give an explicit difference scheme for (1.8) and (1.9) with (1.4) and (1.5). The
explicit difference scheme considered is as follows:

n+1 n—1 n n n+1 n—1 n—I+1 n—I1-1
0 0 1 0 i E iV_t
1.7‘5 ___{ h _\/:e 47%[a07 (al 1_a1)— 1

=1

n+1

+ V(x0, 1) = ;L'p ;o on=1, (1.15)
. lprﬁ—l _lpl?—l 11 lﬁ’ﬁ—l—f—lprf_l '
=y A W — W ) Vg ) T, IS SM -1 > (116)

n+l _ yn—1 12 2 . 1 n+l+lp n—1 n— l+l+lpn -1
1 M M _ —3 71V+
IT——EZ — Ee 4% ao B ;((ll—l _al) 2 f
no__ n n+1
Y= Vi +V(xM,tn)i, n=>l, (1.17)
h 2
Ui =o(x), ¥ =) +1di(x), 0<j<M, (1.18)
where
A1,
B0 =[50~ V(x 0>¢>(x>] (1.19)
2

G=— [ =0,1,2,... (1.20)
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It is obvious that

2 2 4
STV ViAW IR

which is a positive and decreasing sequence.

The interior scheme (1.16) is the leap-frog scheme [24], whose truncation error is O(z> + 4%). For the Dirich-
let problem, the leap-frog scheme is conditional stable with the restrictive condition t/h* < 1/2 [24]. Another
common used explicit scheme is the Dufort-Frankel scheme

. lpr_lJrl _lpr.y—] 1 1 e - lpl‘.l‘f*l +l//rf—]
1'%:—5;[‘/@“ W ) |+ V) =

It can be simply obtained by replacing the term / with (xp”“ + lp” "Y/2 in the leap-frog scheme (1.16).
The truncation error of the Dufort-Frankel scheme is of order (7 +h2 + (t/h)?). For the Dirichlet prob-
lem, the Dufort-Frankel scheme is unconditional stable [24]. In order to ensure the consistency, the meshes
should satisfy t/h — 0 as the meshes t and % go to zero. Therefore, the key to the convergence is the
consistency.

By introducing a dissipative term to the leap-frog scheme, Dai [12] establishes a three level explicit differ-
ence scheme for the variable coefficient Schrodinger equation with initial and Dirichlet boundary conditions.
The scheme is proved to be unconditional stable by the discrete energy method. The scheme is the same as the
Dufort-Frankel scheme in [43] except a constant in the dissipative term.

The organization of this article is the following. In Section 2, we present some preliminary lemmas.
Lemma 2 is prepared for the derivation of the difference scheme and Lemma 3 is for the analysis of the
difference scheme. In Section 3, we derive the fully discretized explicit difference scheme (1.15)—(1.18) for
the problem (1.8) and (1.9) with (1.4) and (1.5). The truncation errors are given in detail, which will be used
in the proof of the convergence of the difference scheme. The stability and convergence are proved under the
condition 4 = /A% < 1/2 in Section 4. The convergence order is of O(h*? + th~'/?). Finally, Section 5 presents
a numerical experiment showing the theoretical results. A brief conclusion is given at the end of the article.
Theorems 3 and 4 are our main results. In the following, we suppose that the problem (1.1)—(1.3) has an
appropriate smooth solution.

2. Preliminary lemmas

The following two lemmas will be used to derive the difference scheme (1.15)—(1.18).

Lemma 1 [44]. Suppose f(t) € C*[0,t,]. Then
/ g Z f(te) = f(te-1)
0

Lemma 2. Suppose f(t) € C*[0,t,41] and f(0) = 0. Denote

_ i f
dt t—s

Then, we have

é(lO\/_— 11) max |f"(¢)|7¥>.

0<1<ty

n—1
% Fl) + Flt)] = \}% [ao f(tai1) ;f(t,,_o - ,Z: (ar1 — ay L omt1) ;f(z,,_,_l) o
+ri(a,— — a,,)r]/2 B

where {a,} is defined in (1.20) and there exists a constant C dependent on f such that
ml<c, |nl<c (2.1)
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Proof. Similarly to the proof of Lemma 2.2 in [39], we can obtain

1 11 . —ivt;
E [F(t,,+1) +F(l,,,1)] = E %{ |fmf(h;+1) - Z(a/—l - al)f(tn—l+1)e

=1

+ |aof (1) = jjwzl—aofan,1>lw }-+o<”5
&?Pﬁgiég;LL ii”lm (SMESIC
(an1 — an)f (2“) e | 4 O(?)
:;EFJVHO;fVWO_ikml_aﬂﬂm#ﬂzfm44%4ﬂ
(@1 an)];(t\/‘%) - O(7?)

Noticing that

f(t) _ £~ 1(0)
27 NG

this completes the proof. [

SOV

The following Lemma will be used for the analysis of the difference scheme. It is a discrete counterpart of
Lemma 2.1 in [3], which states that the kernel of the Dirichlet-to-Neumann operator €™4,/d/dt is of positive
type in the sense of memory equations (see, e.g. [17]).

Lemma 3 [39]. For u= (ul,u2 LU ) where u; is a complex number, 1 < i< N, we have

N n—1
it —_— 1
Relet -1 u" agu”" — (An—t—1 — an_k)u"] } > 0,
{ Zl Vi l P
where {a;} is defined in (1.20).

3. The consistency analysis of the overall scheme

We denote by ¥(¢) the value of the solution (x, ) at the point (x;,1).
Considering the differential equation (1.8) at the point (x;, ), we have
O (x;, 1) 1 % (x, 1) .
S , A <j< M, . 1
i o 3 o +V(x;, Op(x;,8), 0<j t>0 (3.1
Using the Taylor expansion, it follows from (3.1), (1.9) and (1.4), (1.5) that

AWo(r) 1 2P0 - W) ﬁ ey d [T Pols)e”
= =737 ; e @) Vi ds| + V(x0,)Po(t) + Ro(t), t>0,
(3.2)
.d¥;(1) 1 1 )
¢ T2y [Prr(r) = 29,(0) + ¥y (O] + V() P)(6) +Ri(1), 1<j<M—1, t>0, (33)
d¥y(@) 1 2} gef(%rm)ig C W (s)e’ ds — Pu(t) — Pua(t)
d 2 h T dt Jo t—s h
+ V(xu, ) Pur(t) + Ru(t), t>0, (3.4)

¥,0) = g(x), 0<j<M, (3.5)
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where there exists a constant ¢; such that
IRo(t)| < c1h,  |[Ru(t)| < cih;  |R;(1)| < eih?, 1<j<M—1. (3.6)
For (3.2) and (3.4), we have used
2 2 _
0 W(xla ) _“ |:¢(X1 + h7 t) lp('xla t) _ alp(xlv t):| + O(h),

ox2 h h ox
(s t) _ 2 [0 1) (s 1) — Yl — 1)
Denote
v d [T Wo(s)e” L, d [T W(s)e
— Wt = EAASTAR _ ir,e 9 Tyls)e ™
F)=e"'5 N ds, G(o)=e" O ———ds
It follows from (3.2)—(3.5) that
d¥,(¢ 12 — Pl(t, p) 1 1
((;f ):_E.Z w_ E-e4~§[F(fn+1)+F(l‘nf1)] + V(xo,t,) - E[WO(nH)"‘WO(nl)]
2
+O<h+h>, n=1,
. d¥P (2, 1 1 1
L (j1§ ):7§.P[TJ+1( ) 2T( )+lpjl( )]+V(xja ) 5[ (n+1)+llv( )]+O(‘C2+h2)7

1

+ V(XM, tn) . 5 [WM(tn+l)

(dPu) 12 [_\/%e-%i%[G(th) 4 G(t,1)) — Lolte) = X ()

2
+¥’M(tn_1)]+o(h+%>, n> 1,

Vito) = dlx;),  Wi(t) = d(x;) + 11 (x;) +O(7), 0<j<M.

l‘”:l = le(tn)~

Using the Taylor expansion and applying Lemma 2, we have

LA R WA L S \F o 1| et ottt
Y - . —q e -0 -9 _ -1
! 2 AR TV IZ("“ a) ¢

2 e 2
'Pn+1 'Pn—l 2
+(ay_ — a,)0(c'7?) +O(T3/2)} + V(xo,tn)%_F O(h +%>, n =1, (3.7)
l}l’?+1 _ .Prf—l 11 n+1 + yn- 1
i'%:_iﬁ( =2 W)V (xgt )%-FO(T + 1),
1<j<M—-1, n=1, (3.8)
) yI/rH»l _ 'I/nfl 12 2 .1 lII"*l +III”*1 n—1 ,I/nflJrl +lI/nflfl )
i.-M - M :_5%{_ Ee_ZIF ao M 5 M _;(alil_m) M 5 M e iVt
12 sy Py =P v+ v
+(an-1 —a,)0(t77) + O(= )—T +V(xM,tn)f+O h+ﬁ , n=1,
(3.9)

¥ =), ¥ =¢l)+1d(x)+0(), 0</j<M. (3.10)



886 Z.-z. Sun | Journal of Computational Physics 219 (2006) 879-898

Omitting the small terms in (3.7)—(3.10), we construct the difference scheme (1.15)—(1.18) for (1.8) and (1.9)
with (1.4) and (1.5).

4. The stability and convergence of the difference scheme
In this section, we will discuss the stability and convergence of the difference scheme.

Let u= {10 <j < M} and v = {r;]0 < j < M} are two grid (complex) functions on . Introduce the follow-
ing inner product and the norms:

1 = 1
(u,v) =h <§uovo + ZVJU/ + EMMUM> )

lull = /), July

u, 1‘

In addition, we denote

1 1
5xuj_% = Z(u’ —u;_1), 5iuj =7 (5xuj+% — 5xuj_%>.

Theorem 3. Let {y/}} be the solution of the difference scheme (1.15)«(1.18). Then we have

n+1)2 np2 N n T 2 2 o 0
1+ 1 +r-1m{hjzl(5xw;;)(5xw,%)} < I+ ) +r-1m{hjzl(axw}%) (@Cw?%)},
n=12.... (4.1)
In addition, if

R T 1
we have
R 1 + 22
" 1P+ [y < (Ill// 12+ 1017, n=1,2,.... (4.3)
Proof. Let
By
STy
and denote

M—1
<¢"7V<-7rn>¢">=hl§ S0 O+ 3 VG 5 >|¢M|].

J

Multiplying (1.15) by —ihq{) (1.16) by 21h¢7 and (1.17) by —1hqu respectively, then summing up the results,
we obtain

1 1 n— n+ = n+ n— n+ n— 1 n+ n+ n—
hlz( (R A 7 (A A R (R TR (A M‘ﬂ/(zr)
j=1
s Tn n M_l_n 2.n n n : 2 I 1 an n - n—I V_
= 1] Po0x} "’h;d’jéx% i VUR VY ‘\/;e“'%% aoy — ;(a, L ap) gy e

=1

n—1
B i\/%e%iﬁ i [an =S s —a)dlyte ] —2i(¢", V(- 1,)9")
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M-1 n—1
— S (077) (1) e U s - g
=0 =1
Gl 1 o n - n—I —1l/+t, n
- \/;64 %‘f’}w [a0¢M - ;(al L —andy, 1) "),
Taking the real part, we have
1 ) M-1
n+1 n—1
5 (P = 1P —Im{h 0 (5:7) ( }
=

—1
\/—Re{e‘“(ﬁo [ao(f’o > lar —a)gy leiV”] }

=1

n—1
- \/%\/L;Re{e%i% [“0¢X4 - Z(QH - d/)¢X41€iV“"| }

=1

+ 2Im{(¢", V (-, 1,)$") }. (4.4)
Substituting
w{(657) (392} = [ G 57 + {6 07
=3 [Fm{ (o) (772) 1 (573) ()
and (because of Im{ V(x, 1)} < 0)
Im{(¢", V' (-,2,)¢")} = (¢", Im{V (-, 2,) }¢") <0
into (4.4), we get
R e e { e [a B - ’:Z_?(al —a)gy e H
- 2\}_Re{e4‘m[ ao e — 1_: (a1 — ap) gl e+ H (4.5)
where
Fr= P o+ ) + Im{hz (61 (0.07) }
Since
W= ZMJ v hZMj,f (W + ) < o I
we have
0> (o) (3 < W e < (G (Bwen) < 00 1),
Consequently, we have
(4.6)

(1 =22) (" 1P + 1P < F < (U221 + g1,
It is seen that F" is equivalent to [y "> + || if 1 <1/2.
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Letting u" = ¢pel’ - and u" = ¢},e”+ in Lemma 3 respectively, we have
Re{eﬁ‘ > der [4) SDICEE >¢>] } >0 (47)
=1 =1
and

Re{e%l > e [a()(p;;ew = (a1 - a,)qSL_[e'V*’”’] } > 0. (4.8)

n=1 =1

Summing up (4.5) for n from 1 to N, then using (4.7) and (4.8), we get

1

2t
It follows that

(F"—F") <0, N=1,2,...

F'<F, n=1,2,...,
which is (4.1).
Using (4.6) in (4.1), we get
(L= 22" 1P+ 117 < (L 20U + 1°1P).
When / < 1, we obtain

1424 (
1-24
This completes the proof. O

[P+ P < WP+, =123

Next we turn to the question of the convergence of the difference scheme.

Theorem 4. Assume (1.8) and (1.9) with (1.4) and (1.5) have solution y(x,t) € Ct7 ([x1,x:] x [0, T]) and {y/!} be
the solution of (1.15)—(1.18). Let
Ul=¥—y), P=y(,t), 0<j<M, n>0.

Then, if A <1/2 and © < (1 — 21)/2, we have

2 r 3/2 2vV2
jon) < Y2 em{\/(l+zz)(xr—xl)#+\/‘T‘[z(h3/2+Zl/2>+ Z(xr—xl)(rz—khz)]—k}:l//}},

1—22
when nt < 7T,
or,
|U"|| = O(** 4+ th™'?), when nt < T, (4.9)
where the constant c is defined in (4.14) and (4.15).

Proof. Denote

n 1 n+1 n—1
Wi =5 WU+ U

Subtracting (1.15)—(1.18) from (3.7)—(3.10), we can obtain the error equations:

ooyttt gt 1 2|U}-U; 2 o 1 n — n—1 ,—i

+ V(xo, t,) Wy + Py, n=1, (4.10)
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U?‘Fl _ U;z—l 11

i-T-: _E'hz( T = 2U+ UL) + V(x t,) W + P,
I<j<M-1, n=1, (4.11)
Uil 7 i = —%%{—\/%egi% [aoWZ - jzli(al—l —a)Wy e | — W}
+ V(xy, t)Wy, + Py, n=1, (4.12)
Ul=0, Uj=r;, 0<j<M, (4.13)
where there exists a constant ¢ such that
232 712 I 712
[Pol < c{h+h+ (an-1 —a,,)h], P < c{h+h+ (@n1 —a,,)h], (4.14)
|Pj*%| e+, 1<j<M-1; |r<c?, 0<j<M. (4.15)

Multiplying (4.10) by —ihW(, (4.11) by —2ihW} and (4.12) by —ikW}, respectively, then summing up the
results, we obtain

- Un+l Un 1 M—1 U”+1 _ (]"*1 . Un+1 Unfl
h Wn 2 Wn L Wn M
R e L
: — T n 2 Gl 1 7 n S n—1I —iV_t
= —ih Z (5XW].+%) (5xU/+%) o Tl S (@ —aywyle
j=0 =1
- \ﬁeﬁiiw aw", — i(a/ L —a) Wit Vsl 2y (Wt V(- 8, )W) — 20(W", P
B \/E M M - - M ) yPn bl *
Similarly to the proof of Theorem 3, taking the real part and noticing Im(¥(x,¢)) < 0, we get

1 n n— 21 L 87740 n - n—I ,—i
Z(G -G 1) = —\/;WRG{G“ WO [aoWO — Z(Gl,l — Ll])WO le V-t }

=1

71 S : n—1 -
— \/;%Re{@l WM laOWM — [Z:(a;,] — a;)WM ’e V+t;| }

S+ 20m{ (", V (-, £,) ")} + 20m{ (", P")}

2 1 H————— . Uit .
< —/= —=Rel e wpel’ - |aWie” " =Y (a1 —ay)Wy e
2 1 SN iVt n 1V 2 - n—1 A1V 4 t,
—Re es' W eVt | ag W e —Z(a;,l —a)Wy e it
G =
+ P+ 1P (4.16)
where
5 5 M~-1
no__ n+1 n n+1 T
G = U2+ |lU) +Im{h ‘ 0( Uﬁl)(éxUﬁ%)}.
=

Similarly to (4.6), we have

(1 =22)(IU™ P +1IU"1°) < 6" < (L4 20)(IU™F + [U]?). (4.17)
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Applying Lemma 3 and similarly to the proof of (4.7), (4.8), we have

n—1
Re{e Z W”elV tn [GOW" oty _ Z(aFl _ az)ngein”'] } =0

n=1 =1

and

N n—1
i , o
Re{e41 E W eilsin [aoWﬁle‘V*’" - E (ary —a))W"; le‘”’”’] } > 0.
] =

Summing up (4.16) for n from 1 to N and using (4.18) and (4.19), we get

N N n+1 n—1
a2 o (| pn o) +HU [
)< AP+ 1P Z( + (1P
=1

n=1

=

N
1
n 2 ny| 2 2 7112
(T + 1ol +5 10 +Z||P I, N=1
=1 n=

N\'—‘

n

Using (4.17), we have

G" < G +1||U°|P + 212 |1P¥|1?
k=1

E (; n >
2A k=1 7 - .

G"<2 n =1

)

G+ 1| U°|]* + Z‘EZ P17

k=1

n—1
Gk
=7

The discrete Gronwall inequality [30] gives,

G" < 2e% <G°+r||U°||2 +2’~'ZIP"|2>, nzl,
k=1

or,

24

k=1

2 -
U+ U1 < = ey ((1 22U+ VP + 2| U°)* + 20y IP"||2>7 n=1

It follows from (4.13)—(4.15) that
U =0, [[UY] < V=t

and
3/2 1/2\ 12
P[> < & {c(h +TT+ (@1 — a,,)%)} + (M — Dhfe(e* + hz)]Z
32 /2 2 21 2,2 242
h +W +2€ (an—l—an) Z—F(Xr—xl)c (‘L’ —|—h).
Substituting (4.21) and (4.22) into (4.20) and using

n n

Z(ak—l - ak)2 < Z(ak—l —ap) =ay—a, <ay =2,

k=1 k=1

we obtain

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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n n 2 2nt N & 73/2 ?
1o + |U|)? < — 2/{@122{(1 +20) (% — x1) Pt + ZT; [202 <h3/2 +W>

+ 2% (a1 — a,,)zi—l— (e —x)3 (72 + 1)’ }
2L 24 2 3/2 o2\ ?
< YA (1 4+24)(x; —x)c°t" + 4c T(h +W)

2

+88 T 4 2(n —x)ET(@ + K|, when (nt1e<T,

which yields

2 32 2V2
Ul < \/%em{\/(l +27)(x, —x)T + ﬁ[z(;ﬁ/z +#> + V2% —xl)(12+h2):| +%}

when nt < T.
This completes the proof. O

5. Numerical results

In order to demonstrate the effectiveness of our difference scheme, we compute the following problem:

oy 18y
la—t——za—xz, XGR, t>0, (51)
x(1—-x), x€]0,1],
0) = 52
e = o >
The exact solution of the problem above is [26]
W) = — /Eu &)l ag (5.3)
X, 1) = — — 2 . .
V2t Jo

Take a positive integer M. Let N =4M> h=1/M, t=1/N. Then A= 1/4, t = h*/4. Table 1 gives some
numerical solutions obtained by the difference scheme (1.15)—(1.18) and the exact solutions at three points.
Table 2 presents the errors of the difference solutions in L, norm with different mesh sizes on the line
t = 1. Fig. 1 plots the errors of the difference solutions with M =8, 16, 32, 64, 128, 256 on the line ¢ = 1.
Fig. 2 plots the errors of the difference solutions in L, norm on the line t =1 with respect to the different
grid number M and step size h, respectively. It is clear that ||¥" — y"| decreases much quickly as the grid
number M increases or as the mesh size & decreases. The values max;<,<y_i {[¥"|* + " IP /(WO + ')
are listed at Table 3. The difference scheme (1.15)—(1.18) is stable when 1 = 1/4.

Table 1
Some numerical results with 1= 1/4
M\(x, 1) (0.0,1.0) (0.5,1.0) (1.0,1.0)

8 0.051909 — 0.039143i 0.046943 — 0.0470151 0.051909 — 0.039143i
16 0.052847 — 0.039191i 0.047725 — 0.046029i 0.052847 — 0.039191i
32 0.053081 — 0.0392071 0.048020 — 0.0458351 0.053081 — 0.0392071
64 0.053136 — 0.03921i 0.048117 — 0.045814i 0.053136 — 0.039210i

128 0.053150 — 0.0392111 0.048148 — 0.045811 0.053150 — 0.039211i
256 0.053153 — 0.039212i 0.048156 — 0.045811i 0.053153 — 0.039212i
Exact solution 0.053154 — 0.039212i 0.048159 — 0.045811 0.053154 — 0.039212i
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Table 2
The errors of the difference solutions at t =1 with 1 =1/4
M (N =4 1™ — ™| o™ — M — gt
8 1.951271e — 3 *
16 4.987582¢ — 4 3912
32 1.243734e — 4 4.010
64 3.113997e — 5 3.994
128 7.882658e — 6 3.950
256 1.991164e — 6 3.950
g X107 5 x10°
M=16
6t

IW (X’1)_Wh(x71)|

1

L2 norm of the error at t

0.6 |

04 |

0.2

ly (x,1)-y, (x,7)I

M=32

7

0.8 |

X

Fig. 1. The errors of the difference solutions at =1 when A= 1/4.
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Fig. 2. The errors of the difference solutions at = 1 with respect to 4 when /. = 1/4.
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The numerical stability of the difference solutions with 1 = 1/4

M (N =4M°) max<uen— 1 (WP + 11 PP + ')

8 1.002829
16 1.000345
32 1.000042
64 1.000005

128 1.000001

Table 4

Some numerical results with 1 =1/3

M\(x,1) (0.0,1.0) (0.5,1.0) (1.0,1.0)

8 0.052013 — 0.039292i 0.046645 — 0.0466261 0.052013 — 0.039292i
16 0.052871 — 0.039217i 0.047476 — 0.045738i 0.052871 — 0.039217i
32 0.053077 — 0.039208i 0.047925 — 0.045837i 0.053077 — 0.039208i
64 0.053135 — 0.039211i 0.048107 — 0.045803i1 0.053135 — 0.039211i

128 0.053149 — 0.039212i 0.048147 — 0.045812i 0.053149 — 0.039212i
256 0.053153 — 0.039212i 0.048155 — 0.045809i 0.053153 — 0.039212i

Exact solution

0.053154 — 0.039212i

0.048159 — 0.0458101

0.053154 — 0.039212i

Table 5

The errors of the difference solutions at =1 with A = 1/3

M (N =3M) e — g [N — g MY — |
8 2.012736e — 3 *
16 5.463110e — 4 3.684
32 1.414815¢ — 4 3.861
64 3.630773¢ — 5 3.897
128 9.268045¢ — 6 3918
256 2.339402¢ — 6 3.962

(v (% 1)—y, (x,1)]

x 10

IW(X’1)_Wh(Xv1)I

02 03 04 05 O

X

L L L L
.6 07 08 09 1

x107°

03 04

05 06 07
X

08 09 1

Fig. 3. The errors of the difference solutions at 7 =1 when A =1/3.
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Take a positive integer M. Let N=3 M h=1/M, t=1/N. Then .= 1/3, © = h*/3. Table 4 gives some
numerical solutions obtained by the difference scheme (1.15)—(1.18) and the exact solutions at three points.
Table 5 presents the errors of difference solutions in L, norm with different mesh sizes on the line = 1.
Fig. 3 plots the errors of the difference solutions with M = 8, 16, 32, 64, 128, 256 on the line 1 = 1. Fig. 4 plots
the errors of the difference solutions in L, norm on the line = 1 with respect to the different grid number M
and step size /, respectively. The values max; << y_i " I + [l P} /(WCIF + [lW'|P?) are listed at Table 6. The
difference scheme (1.15)—(1.18) is stable if A =1/3.

-3 -3
o5 X10 25 X109
- 2 - 2
& &
© ©
S S
s =
OREE o 15t
s S
° °
£ £
2 2
o N
- -
05 1 05
0 Il " Il L 0 Il Il Il Il Il Il
0 50 100 150 200 250 300 0 002 004 006 008 0.1 012 0.4
number of grid points M mesh size h
Fig. 4. The errors of the difference solutions at # = 1 with respect to 4 when 1 = 1/3.
Table 6
The numerical stability of the difference solutions with 2 =1/3
M (N =3M?) max; <<y {117+ I AR + ')

8 1.004586
16 1.000549
32 1.000067
64 1.000008

128 1.000001

Table 7

Some numerical results at =1 with 1 =1/2

M \(x,1) (0.0,1.0) (0.5,1.0) (1.0,1.0)

8 0.068505 — 0.068088i 0.062318 — 0.0759261 0.068505 — 0.0680881
16 0.060698 — 0.053681i 0.055177 — 0.060539i 0.060698 — 0.0536811
32 0.056888 — 0.046441 0.051722 — 0.053083i 0.056888 — 0.046440i
64 0.055011 — 0.042823i 0.049968 — 0.049427i 0.055011 — 0.042823i

128 0.054080 — 0.041017i 0.049072 — 0.047615i1 0.054080 — 0.041017i
256 0.053616 — 0.040114i 0.048618 — 0.046712i 0.053616 — 0.040114i

Exact solution

0.053154 — 0.039212i

0.048159 — 0.04581i

0.053154 — 0.039212i
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Table 8
The errors of the difference solutions at t = 1 with 2 =1/2
M (N =2M°) LAEAl PN — ™Y — |
8 3.343530e — 2 *
16 1.645601e — 2 2.032
32 8.165368¢ — 3 2.015
64 4.067780e — 3 2.007
128 2.030282¢ — 3 2.004
256 1.014255¢ — 3 2.002
-3
0.02 5 X 10\
0.018 | 1 45 =64
M=16
N\/\/\/\/\//\/\ /
0.016 1 4 r
f_ 0.014 = 35[
= %
A o012 |} 3
X =
> I X L6l
= oo . g 25 Met26
0.008 F 2 F
0.006 1 15} M=256
M=64
0.004 : : fm— : ——— - : 1 - - - - ‘ - . . -
01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X
Fig. 5. The errors of the difference solutions at =1 when A =1/2.
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Fig. 6. The errors of the difference solutions at # = 1 with respect to 4 when 4 =1/2.
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Table 9

The numerical stability of the difference solutions with 2 =1/2

M (N =2M°) max<uen— 1 (W1 + I PP + 1P

8 1.008996

16 1.001046
32 1.000125
64 1.000015

128 1.000002

Table 10

The numerical un-stability of the difference solutions with A =8 and N = 2M* — 1

n | n |
0 0.0333 37 0.0418
1 0.0334 47 0.0804
2 0.0339 57 0.1836
3 0.0327 67 0.4468
4 0.0333 77 1.1164
5 0.0328 87 2.8036
6 0.0330 97 7.0735
7 0.0324 107 17.4383

17 0.0316 117 45.0414

27 0.0298 127 113.6755

We find that the scheme is also convergent at the critical value A = 1/2, but the convergence order is only 1
in space. Take N = 2M>. Some numerical results obtained by the difference scheme (1.15)—(1.18) and the errors
of the difference solutions on the line = 1 in L, norm are presented in Tables 7 and 8. Fig. 5 plots the errors of
the difference solutions with M =8, 16, 32, 64, 128, 256 on the line = 1. Fig. 6 plots the errors of the differ-
ence solutions in L, norm on the line = 1 with respect to the different grid number M and step size 4, respec-
tively. The values max,<,<y_i{W"IF + "7}/ (WO + [['||*) are listed at Table 9. The difference scheme
(1.15)—(1.18) is stable when A =1/2.

If we take N = 2M* — 1, numerical computation shows that the difference scheme is unstable. Some values
["|I* are listed at Table 10. The difference scheme (1.15)—(1.18) is unstable.

6. Conclusion and two open problems

In this paper, a numerical solution to the time-dependent Schrédinger equation on an infinite domain is
considered. Two exact artificial boundary conditions are introduced to reduce the original problem into an
initial boundary value problem with a finite computational domain. A fully discrete three-level explicit differ-
ence scheme is presented. The stability and convergence are analyzed by the energy method, where Lemma 3
plays an important role. If 7/h* = O(1), then the convergence rate is order of oY 2.

A numerical example is shown to demonstrate the effectiveness of the difference scheme. Seeing Tables 2
and 5, a second order reduction can be observed for the L, norm. There remains an open problem whether
the estimate (4.9) is optimal or not. Moreover, at the critical value 7/4* = 1/2, the numerical results show that
the proposed scheme is still convergent, but with a less order 1. Could this be proved? This is an another open
problem.
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